

SN65MLVD200A, SN65MLVD202A SN65MLVD204A, SN65MLVD205A

SLLS573 - DECEMBER 2003

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER

FEATURES

- Low-Voltage Differential 30- Ω to 55- Ω Line Drivers and Receivers for Signaling Rates⁽¹⁾ Up to 100 Mbps, Clock Frequencies up to 50 MHz
- Type-1 Receivers Incorporate 25 mV of Hysteresis (200A, 202A)
- Type-2 Receivers Provide an Offset (100 mV) Threshold to Detect Open-Circuit and Idle-Bus Conditions (204A, 205A)
- Meets or Exceeds the M-LVDS Standard TIA/EIA-899 for Multipoint Data Interchange
- Power Up/Down Glitch Free
- Controlled Driver Output Voltage Transition Times for Improved Signal Quality
- -1 V to 3.4 V Common-Mode Voltage Range Allows Data Transfer With 2 V of Ground Noise
- Bus Pins High Impedance When Disabled or V_{CC} ≤ 1.5 V
- 200-Mbps Devices Available (SN65MLVD201, 203, 206, 207)
- Bus Pin ESD Protection Exceeds 8 kV
- Package in 8-Pin SOIC (200A, 204A) and 14-Pin SOIC (202A, 205A)
- Improved Alternatives to the SN65MLVD200, 202, 204, and 205

APPLICATIONS

- Low-Power High-Speed Short-Reach Alternative to TIA/EIA-485
- Backplane or Cabled Multipoint Data and Clock Transmission

- Cellular Base Stations
- Central-Office Switches
- Network Switches and Routers

DESCRIPTION

The SN65MLVD200A, 202A, 204A, and 205A are multipoint-low-voltage differential (M-LVDS) line drivers and receivers, which are optimized to operate at signaling rates up to 100 Mbps. All parts comply with the multipoint low-voltage differential signaling (M-LVDS) standard TIA/EIA-899. These circuits are similar to their TIA/EIA-644 standard compliant LVDS counterparts, with added features to address multipoint applications. The driver output has been designed to support multipoint buses presenting loads as low as 30 Ω and incorporates controlled transition times to allow for stubs off of the backbone transmission line.

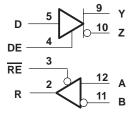
These devices have Type-1 and Type-2 receivers that detect the bus state with as little as 50 mV of differential input voltage over a common-mode voltage range of -1 V to 3.4 V. The Type-1 receivers exhibit 25 mV of differential input voltage hysteresis to prevent output oscillations with slowly changing signals or loss of input. Type-2 receivers include an offset threshold to provide a known output state under open-circuit, idle-bus, and other fault conditions.

The SN65MLVD200A, 202A, 204A, and 205A have enhancements over their predecessors. Improved features include better controlled slew rate on the driver output to help minimize reflections while improving overall signal integrity (SI) resulting in better jitter performance. Additionally, 8-kV ESD protection on the bus pins for more robustness. The same footprint definition was maintained making for an easy drop-in replacement for a system performance upgrade.

The devices are characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

(1) The signaling rate of a line, is the number of voltage transitions that are made per second expressed in the units bps (bits per second).



LOGIC DIAGRAM (POSITIVE LOGIC)

SN65MLVD200A, SN65MLVD204A

DE 3 D 4 R 1 R 7 R 8

SN65MLVD202A, SN65MLVD205A

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

PART NUMBER(1)	FOOTPRINT	RECEIVER TYPE	PACKAGE MARKING
SN65MLVD200AD	SN75176	Type 1	MF200A
SM65MLVD202AD	SN75ALS180	Type 1	MLVD202A
SN65MLVD204AD	SN75176	Type 2	MF204A
SM65MLVD205AD	SN75ALS180	Type 2	MLVD205A

⁽¹⁾ Available tape and reeled. To order a tape and reeled part, add the suffix R to the part number (e.g., SN65MLVD200ADR).

PACKAGE DISSIPATION RATINGS

PACKAGE	$T_{\mbox{\scriptsize A}} \le 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 85°C POWER RATING
D(8)	532 mW	4.6 mW/°C	254 mW
D(14)	940 mW	8.2 mW/°C	450 mw

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted(1)

			SN65MLVD200A, 202A, 204A, AND 205A		
Supply voltage range(2),	Supply voltage range ⁽²⁾ , V _{CC}				
	D, DE, RE		–0.5 V to 4 V		
Input voltage range	A, B (200A, 204A)		–1.8 V to 4 V		
	A, B (202A, 205A)	–4 V to 6 V			
Outset will an annual	R		–0.3 V to 4 V		
Output voltage range	Y, Z, A, or B		–1.8 V to 4 V		
	Lluman Dadu Madal(3)	A, B, Y, and Z	±8 kV		
Electrostatic discharge	Human Body Model(3)	All pins	±4 kV		
	Charged-Device Model ⁽⁴⁾	All pins	±1500 V		
Continuous power dissipa	ation		See Dissipation Rating Table		
Storage temperature rang	je		−65°C to 150°C		

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

⁽³⁾ Tested in accordance with JEDEC Standard 22, Test Method A114-A.

⁽⁴⁾ Tested in accordance with JEDEC Standard 22, Test Method C101.

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	3	3.3	3.6	V
High-level input voltage, V _{IH}	2		VCC	V
Low-level input voltage, V _{IL}	GND		0.8	V
Voltage at any bus terminal V _A , V _B , V _Y or V _Z	-1.4		3.8	V
Magnitude of differential input voltage, V _{ID}	0.05		VCC	V
Differential load resistance, R _L	30	50		Ω
Signaling rate, 1/tUI			100	Mbps
Operating free-air temperature, T _A	-40		85	°C

DEVICE ELECTRICAL CHARACTERISTICS

PARAMETER			TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT
		Driver only	RE and DE at V_{CC} , $R_L = 50 \Omega$, All others open		13	22	
	Cumply oursent	Both disabled	RE at V _{CC} , DE at 0 V, R _L = No Load, All others open		1	4	A
ICC	Supply current	Both enabled	RE at 0 V, DE at V_{CC} , $R_L = 50 \Omega$, All others open		16	24	mA
		Receiver only	RE at 0 V, DE at 0 V, All others open		4	13	
PD	Device power d	issipation	R_L = 50 Ω, Input to D is a 50-MHz 50% duty cycle square wave, DE = high, \overline{RE} = low, T_A = 85°C			94	mW

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply voltage.

DRIVER ELECTRICAL CHARACTERISTICS

	PARAMETER	TEST CONDITIONS	MIN(1)	TYP(2)	MAX	UNIT
V _{AB} or V _{YZ}	Differential output voltage magnitude	Saa Firura O	480		650	mV
$\Delta V_{AB} $ or $\Delta V_{YZ} $	Change in differential output voltage magnitude between logic states	See Figure 2	-50		50	mV
Vos(ss)	Steady-state common-mode output voltage		0.8		1.2	V
ΔV _{OS} (SS)	Change in steady-state common-mode output voltage between logic states	See Figure 3	-50		50	mV
VOS(PP)	Peak-to-peak common-mode output voltage				150	mV
VY(OC) or VA(OC)	Maximum steady-state open-circuit output voltage	Con Figure 7	0		2.4	V
VZ(OC) or VB(OC)	Maximum steady-state open-circuit output voltage	See Figure 7	0		2.4	V
V _{P(H)}	Voltage overshoot, low-to-high level output	Can Figure 5		1.	2VSS	V
V _{P(L)}	Voltage overshoot, high-to-low level output	See Figure 5	-0.2 V _{SS}			V
lН	High-level input current (D, DE)	V _{IH} = 2 V to V _{CC}	0		10	μΑ
Iլլ	Low-level input current (D, DE)	V _{IL} = GND to 0.8 V	0		10	μΑ
IIOS	Differential short-circuit output current magnitude	See Figure 4			24	mA
I _{OZ}	High-impedance state output current (driver only)	$-1.4 \text{ V} \le (\text{V}\gamma \text{ or V}_Z) \le 3.8 \text{ V},$ Other output = 1.2 V	-15		10	μΑ
I _{O(OFF)}	Power-off output current	$-1.4 \text{ V} \le (\text{V} \text{Y or V}_{\text{Z}}) \le 3.8 \text{ V},$ Other output = 1.2 V, $0 \text{ V} \le \text{V}_{\text{CC}} \le 1.5 \text{ V}$	-10		10	μΑ
C _Y or C _Z	Output capacitance	V _I = 0.4 sin(30E6πt) + 0.5 V, (3) Other input at 1.2 V, driver disabled		3		pF
CYZ	Differential output capacitance	V _{AB} = 0.4 sin(30E6πt) V, (3) Driver disabled			2.5	pF
C _{Y/Z}	Output capacitance balance, (CY/CZ)		0.99		1.01	

⁽¹⁾ The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

⁽²⁾ All typical values are at 25°C and with a 3.3-V supply voltage.

⁽³⁾ HP4194A impedance analyzer (or equivalent)

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted(1)

	PARAMETER		TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT
\/	Positive-going differential input voltage	Type 1				50	\/
VIT+	threshold	Type 2				150	mV
\/	Negative-going differential input voltage	Type 1	See Figure 9 and Table 1 and	-50			\/
V _{IT} _	threshold	Type 2	Table 2	50			mV
.,	Differential input voltage hysteresis,	Type 1			25		
VHYS	$(V_{IT+} - V_{IT})$	Type 2			0		mV
VOH	High-level output voltage		I _{OH} = -8 mA	2.4			V
VOL	Low-level output voltage		I _{OL} = 8 mA			0.4	V
ΊΗ	High-level input current (RE)		V _{IH} = 2 V to V _{CC}	-10		0	μΑ
IIL	Low-level input current (RE)		V _{IL} = GND to 0.8 V	-10		0	μΑ
loz	High-impedance output current		V _O = 0 V or 3.6 V	-10		15	μΑ
C _A or C _B	Input capacitance		V _I = 0.4 sin(30E6πt) + 0.5 V,(2) Other input at 1.2 V		3		pF
C _{AB}	Differential input capacitance		$V_{AB} = 0.4 \sin(30E6\pi t) V^{(2)}$			2.5	pF
C _{A/B}	Input capacitance balance, (C _A /C _B)			0.99		1.01	

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply voltage.

BUS INPUT AND OUTPUT ELECTRICAL CHARACTERISTICS

	PARAMETER		ST CONDITIONS	MIN	TYP(1)	MAX	UNIT
		V _A = 3.8 V,	$V_B = 1.2 V$,	0		32	
IA	Receiver or transceiver with driver disabled input current	$V_A = 0 \text{ V or } 2.4 \text{ V},$	V _B = 1.2 V	-20		20	μΑ
	usabled input current	$V_A = -1.4 V$,	V _B = 1.2 V	-32		0	
		V _B = 3.8 V,	V _A = 1.2 V	0		32	
IB	Receiver or transceiver with driver disabled input current	V _B = 0 V or 2.4 V,	V _A = 1.2 V	-20		20	μΑ
	disabled input current	$V_B = -1.4 V$,	V _A = 1.2 V	-32		0	
I _{AB}	Receiver or transceiver with driver disabled differential input current $(I_A - I_B)$	VA = VB,	$-1.4 \le V_{A} \le 3.8 \text{ V}$	-4		4	μΑ
	Receiver or transceiver power-off input current	V _A = 3.8 V,	$V_B = 1.2 \text{ V}, 0 \text{ V} \le V_{CC} \le 1.5 \text{ V}$	0		32	
I _A (OFF)		$V_A = 0 \text{ V or } 2.4 \text{ V},$	$V_B = 1.2 \text{ V}, 0 \text{ V} \le V_{CC} \le 1.5 \text{ V}$	-20		20	μΑ
	current	$V_A = -1.4 V$,	$V_B = 1.2 \text{ V}, 0 \text{ V} \le V_{CC} \le 1.5 \text{ V}$	-32		0	
		$V_B = 3.8 V$,	$V_A = 1.2 \text{ V}, 0 \text{ V} \le V_{CC} \le 1.5 \text{ V}$	0		32	
I _B (OFF)	Receiver or transceiver power-off input current	$V_B = 0 \text{ V or } 2.4 \text{ V},$	$V_A = 1.2 \text{ V}, 0 \text{ V} \le V_{CC} \le 1.5 \text{ V}$	-20		20	μΑ
	current	$V_B = -1.4 V$,	$V_A = 1.2 \text{ V}, 0 \text{ V} \le V_{CC} \le 1.5 \text{ V}$	-32		0	
I _{AB(OFF)}	Receiver input or transceiver power-off differential input current $(I_A - I_B)$	$V_A = V_B$, $0 \text{ V} \leq V_C$	$C \le 1.5 \text{ V}, -1.4 \le \text{VA} \le 3.8 \text{ V}$	-4		4	μΑ
CA	Transceiver with driver disabled input capacitance	$V_A = 0.4 \sin (30E6a)$	$\pi t) + 0.5 V(2), V_B = 1.2 V$		5		pF
C _B	Transceiver with driver disabled input capacitance	V _B = 0.4 sin (30E6	$\pi t) + 0.5V(2), V_A = 1.2 V$		5		pF

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply voltage.

⁽²⁾ HP4194A impedance analyzer (or equivalent)

⁽²⁾ HP4194A impedance analyzer (or equivalent)

BUS INPUT AND OUTPUT ELECTRICAL CHARACTERISTICS (continued)

	PARAMETER	TEST CONDITIONS	MIN TYP	1) MAX	UNIT
C _{AB}	Transceiver with driver disabled differential input capacitance	$V_{AB} = 0.4 \sin (30E6\pi t) V (2)$		3	pF
C _{A/B}	Transceiver with driver disabled input capacitance balance, (C _A /C _B)		0.99	1.01	

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply voltage.

DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT
^t pLH	Propagation delay time, low-to-high-level output		2	2.5	3.5	ns
t _{pHL}	Propagation delay time, high-to-low-level output		2	2.5	3.5	ns
t _r	Differential output signal rise time	Con Firmura F	2	2.6	3.2	ns
tf	Differential output signal fall time	See Figure 5	2	2.6	3.2	ns
tsk(p)	Pulse skew (tpHL - tpLH)			30	150	ps
tsk(pp)	Part-to-part skew				0.9	ns
tjit(per)	Period jitter, rms (1 standard deviation) (2)	50 MHz clock input(3)		2	3	ps
^t jit(pp)	Peak-to-peak jitter(2)(5)	100 Mbps 2 ¹⁵ –1 PRBS input ⁽⁴⁾		55	150	ps
^t pHZ	Disable time, high-level-to-high-impedance output			4	7	ns
t _{pLZ}	Disable time, low-level-to-high-impedance output	Con Firmure C		4	7	ns
^t pZH	Enable time, high-impedance-to-high-level output	See Figure 6		4	7	ns
t _{pZL}	Enable time, high-impedance-to-low-level output			4	7	ns

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply voltage.

RECEIVER SWITCHING CHARACTERISTICS

	PARAMETER		TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT
^t pLH	Propagation delay time, low-to-high-level output			2	3.6	6	ns
^t pHL	Propagation delay time, high-to-low-level output			2	3.6	6	ns
t _r	Output signal rise time			1		2.3	ns
tf	Output signal fall time		C _L = 15 pF, See Figure 10	1		2.3	ns
4	Dulas alsour/lasses as a sull	Type 1			100	300	ps
^t sk(p)	Pulse skew (t _{pHL} - t _{pLH})	Type 2			300	500	ps
tsk(pp)	Part-to-part skew ⁽²⁾					1	ns
^t jit(per)	Period jitter, rms (1 standard deviation) (3)		50 MHz clock input ⁽⁴⁾		4	7	ps
4	Peak-to-peak jitter(3)(6)	Type 1	100 Mbps 2 ¹⁵ –1 PRBS input(5)		200	700	ps
^t jit(pp)	Peak-to-peak jitter (%)	Type 2	100 Mbps 210=1 PRBS Input(0)		225	800	ps
^t pHZ	Disable time, high-level-to-high-impedance output				6	10	ns
^t pLZ	Disable time, low-level-to-high-impedance output		Con Figure 44		6	10	ns
^t pZH	Enable time, high-impedance-to-high-level output		See Figure 11		10	15	ns
^t pZL	Enable time, high-impedance-to-low-level output				10	15	ns

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply voltage.

⁽²⁾ HP4194A impedance analyzer (or equivalent)

⁽²⁾ Jitter is ensured by design and characterization. Stimulus jitter has been subtracted from the numbers.

⁽³⁾ $t_r = t_f = 0.5 \text{ ns}$ (10% to 90%), measured over 30 k samples.

⁽⁴⁾ $t_r = t_f = 0.5 \text{ ns}$ (10% to 90%), measured over 100 k samples.

⁽⁵⁾ Peak-to-peak jitter includes jitter due to pulse skew (t_{Sk(p)}).

⁽²⁾ HP4194A impedance analyzer (or equivalent)

⁽³⁾ Jitter is ensured by design and characterization. Stimulus jitter has been subtracted from the numbers.

⁽⁴⁾ $V_{ID} = 200 \text{ mV}_{pp}$ (LVD200A, 202A), $V_{ID} = 400 \text{ mV}_{pp}$ (LVD204A, 205A), $V_{cm} = 1 \text{ V}$, $t_r = t_f = 0.5 \text{ ns}$ (10% to 90%), measured over 30 k samples. (5) $V_{ID} = 200 \text{ mV}_{pp}$ (LVD200A, 202A), $V_{ID} = 400 \text{ mV}_{pp}$ (LVD204A, 205A), $V_{cm} = 1 \text{ V}$, $t_r = t_f = 0.5 \text{ ns}$ (10% to 90%), measured over 100 k samples. (6) Peak-to-peak jitter includes jitter due to pulse skew ($t_{sk(p)}$).

PARAMETER MEASUREMENT INFORMATION

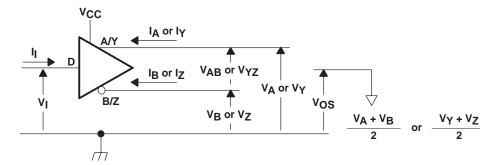
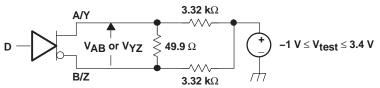
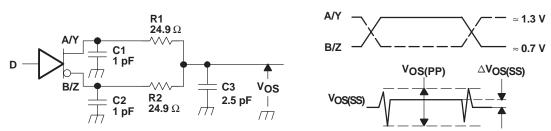




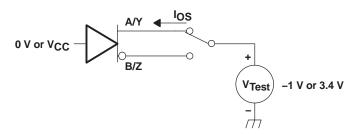
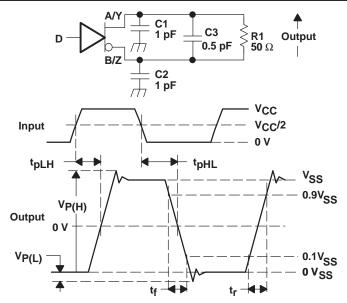
Figure 1. Driver Voltage and Current Definitions

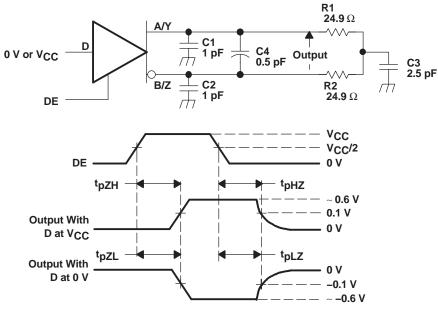
NOTE: All resistors are 1% tolerance.

Figure 2. Differential Output Voltage Test Circuit

- NOTES:A. All input pulses are supplied by a generator having the following characteristics: t_{Γ} or $t_{f} \le 1$ ns, pulse frequency = 1 MHz, duty cycle = $50 \pm 5\%$.
 - B. C1, C2 and C3 include instrumentation and fixture capacitance within 2 cm of the D.U.T. and are ±20%.
 - C. R1 and R2 are metal film, surface mount, $\pm 1\%$, and located within 2 cm of the D.U.T.
 - D. The measurement of VOS(PP) is made on test equipment with a -3 dB bandwidth of at least 1 GHz.

Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage


Figure 4. Driver Short-Circuit Test Circuit

- NOTES:A. All input pulses are supplied by a generator having the following characteristics: t_{Γ} or $t_{f} \le 1$ ns, frequency = 1 MHz, duty cycle = $50 \pm 5\%$.
 - B. C1, C2, and C3 include instrumentation and fixture capacitance within 2 cm of the D.U.T. and are ±20%.
 - C. R1 is a metal film, surface mount, and 1% tolerance and located within 2 cm of the D.U.T.
 - D. The measurement is made on test equipment with a –3 dB bandwidth of at least 1 GHz.

Figure 5. Driver Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal

- NOTES:A. All input pulses are supplied by a generator having the following characteristics: t_f or $t_f \le 1$ ns, frequency = 1 MHz, duty cycle = $50 \pm 5\%$.
 - B. C1, C2, C3, and C4 includes instrumentation and fixture capacitance within 2 cm of the D.U.T. and are $\pm 20\%$.
 - C. R1 and R2 are metal film, surface mount, and 1% tolerance and located within 2 cm of the D.U.T.
 - D. The measurement is made on test equipment with a -3 dB bandwidth of at least 1 GHz.

Figure 6. Driver Enable and Disable Time Circuit and Definitions

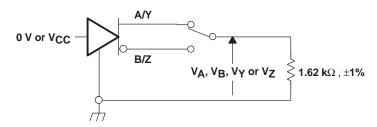
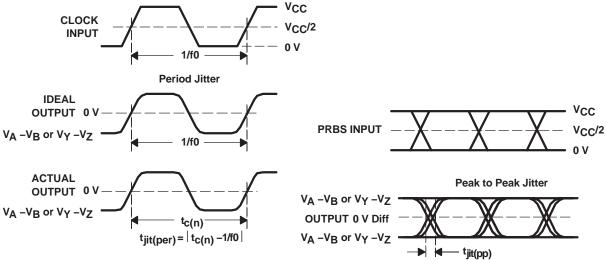



Figure 7. Maximum Steady State Output Voltage

NOTES:A. All input pulses are supplied by an Agilent 81250 Stimulus System.

- B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software
- C. Period jitter is measured using a 50 MHz 50 \pm 1% duty cycle clock input.
- D. Peak-to-peak jitter is measured using a 100Mbps 2¹⁵–1 PRBS input.

Figure 8. Driver Jitter Measurement Waveforms

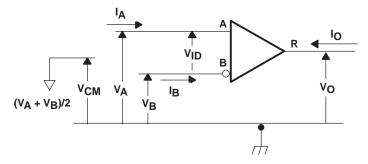
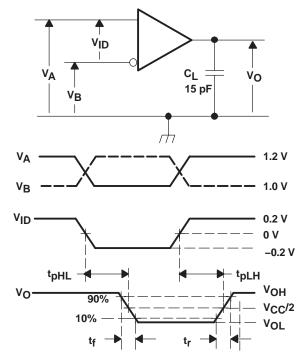


Figure 9. Receiver Voltage and Current Definitions

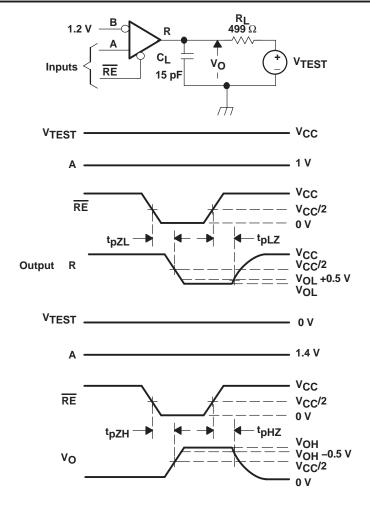
Table 1. Type-1 Receiver Input Threshold Test Voltages


APPLIED V	OLTAGES	RESULTING DIFFERENTIAL INPUT VOLTAGE	RESULTING COMMON- MODE INPUT VOLTAGE	RECEIVER OUTPUT
VIA	V _{IB}	v_{ID}	V _{IC}	001701
2.400	0.000	2.400	1.200	Н
0.000	2.400	-2.400	1.200	L
3.425	3.335	0.050	3.4	Н
3.375	3.425	-0.050	3.4	L
-0.975	-1.025	0.050	-1	Н
-1.025	-0.975	-0.050	-1	L

NOTE: H= high level, L = low level, output state assumes receiver is enabled ($\overline{RE} = L$)

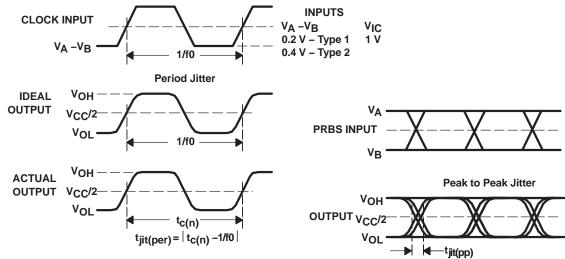
Table 2. Type-2 Receiver Input Threshold Test Voltages

APPLIED V	OLTAGES	RESULTING DIFFERENTIAL INPUT VOLTAGE	RESULTING COMMON- MODE INPUT VOLTAGE	RECEIVER OUTPUT
VIA	V _{IB}	V_{ID}	V _{IC}	OUTPUT
2.400	0.000	2.400	1.200	Н
0.000	2.400	-2.400	1.200	L
3.475	3.325	0.150	3.4	Н
3.425	3.375	0.050	3.4	L
-0.925	-1.075	0.150	-1	Н
-0.975	-1.025	0.050	-1	L


NOTE: H= high level, L = low level, output state assumes receiver is enabled ($\overline{RE} = L$)

NOTES:A. All input pulses are supplied by a generator having the following characteristics: t_{Γ} or $t_{\Gamma} \le 1$ ns, frequency = 1 MHz, duty cycle = 50 \pm 5%. C_L is a combination of a 20%-tolerance, low-loss ceramic, surface-mount capacitor and fixture capacitance within 2 cm of the D.U.T. B. The measurement is made on test equipment with a -3 dB bandwidth of at least 1 GHz.

Figure 10. Receiver Timing Test Circuit and Waveforms



NOTES:A. All input pulses are supplied by a generator having the following characteristics: t_{Γ} or $t_{\Gamma} \le 1$ ns, frequency = 1 MHz, duty cycle = $50 \pm 5\%$.

- B. R_L is 1% tolerance, metal film, surface mount, and located within 2 cm of the D.U.T. C. R_L is 1% tolerance, metal film, surface mount, and located within 2 cm of the D.U.T.
- D. C_L is the instrumentation and fixture capacitance within 2 cm of the DUT and $\pm 20\%$.

Figure 11. Receiver Enable/Disable Time Test Circuit and Waveforms

- NOTES:A. All input pulses are supplied by an Agilent 8304A Stimulus System.
 - B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software
 - C. Period jitter is measured using a 50 MHz 50 \pm 1% duty cycle clock input.
 - D. Peak-to-peak jitter is measured using a 100 Mbps 2¹⁵–1 PRBS input.

Figure 12. Receiver Jitter Measurement Waveforms

PIN ASSIGNMENTS

SN65MLVD200AD (Marked as MF200A) SN65MLVD202AD (Marked as MLVD202A) SN65MLVD204AD (Marked as MF204A) SN65MLVD205AD (Marked as MLVD205A) (TOP VIEW) (TOP VIEW) □Vcc NC[R] Vcc RE ∏в 2 7 R 2 $\exists v_{cc}$ 13 RE DE 3 6 ПΑ 3 12 ٦А DΓ 5 GND DE ٦в 4 11 DΓ 5 $\prod Z$ 10 GND [9 ٦Y

NC - No internal connection

8

NC

6

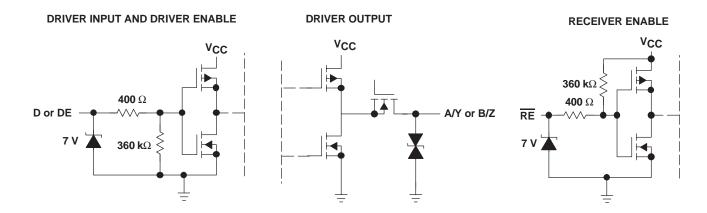
GND

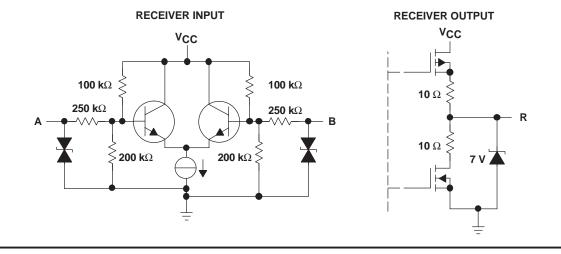
DEVICE FUNCTION TABLE

TYPE-1 RECEIVER (200A, 202A)

INPUTS		OUTPUT	
$V_{ID} = V_A - V_B$	RE	R	
$V_{ID} \ge 50 \text{ mV}$	L	Н	
$-50 \text{ mV} < \text{V}_{\text{ID}} < 50 \text{ mV}$	L	?	
$V_{ID} \le -50 \text{ mV}$	L	L	
X	Н	Z	
X	Open	Z	
Open Circuit	L	?	

TYPE-2 RECEIVER (204A, 205A)


INPUTS	OUTPUT	
$V_{ID} = V_A - V_B$	RE	R
V _{ID} ≥ 150 mV	L	Н
50 mV < V _{ID} < 150 mV	L	?
$V_{ID} \le 50 \text{ mV}$	L	L
X	Н	Z
X	Open	Z
Open Circuit	L	L


DRIVER

INPUT	ENABLE	OUTPUTS	
D	DE	A OR Y	B OR Z
L	Н	L	Н
Н	Н	Н	L
OPEN	Н	L	Н
X	OPEN	Z	Z
Χ	L	Z	Z

H = high level, L = low level, Z = high impedance, X = Don't care, ? = indeterminate

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

TYPICAL CHARACTERISTICS

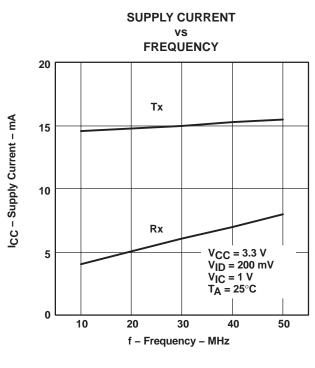


Figure 13

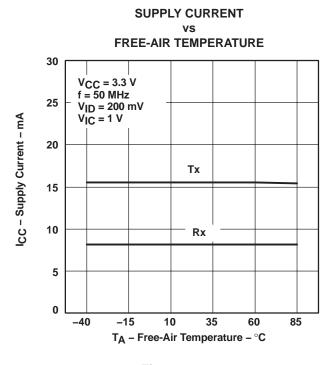
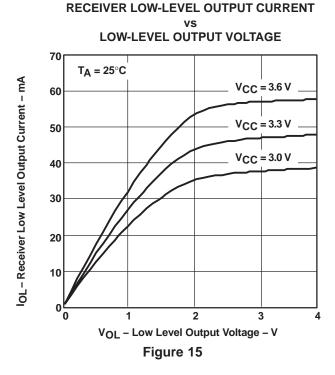
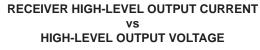




Figure 14

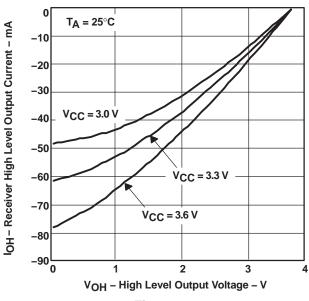


Figure 16

DRIVER PROPAGATION DELAY

FREE-AIR TEMPERATURE

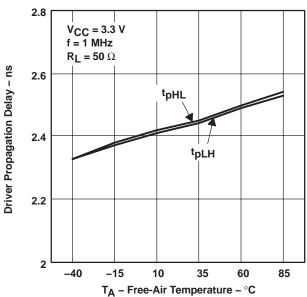


Figure 17

ADDED DRIVER CYCLE-TO-CYCLE JITTER

CLOCK FREQUENCY

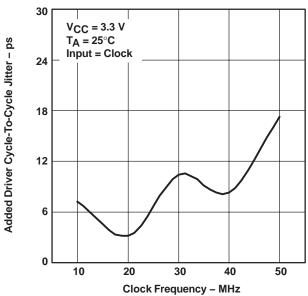


Figure 19

RECEIVER PROPAGATION DELAY vs

FREE-AIR TEMPERATURE

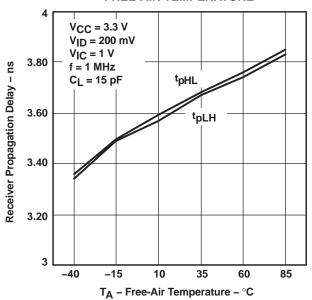
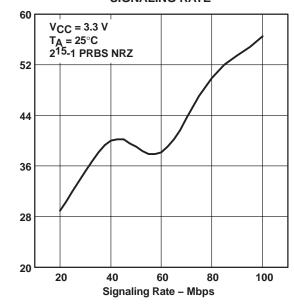



Figure 18

ADDED DRIVER PEAK-TO-PEAK JITTER vs

vs SIGNALING RATE

Added Driver Peak-To-Peak Jitter - ps

Figure 20

Added Driver Peak-To-Peak Jitter - ps

ADDED DRIVER PEAK-TO-PEAK JITTER vs

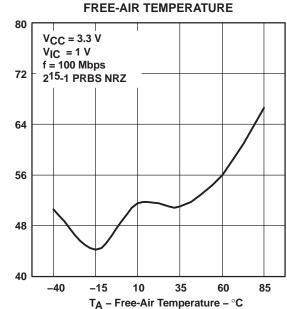


Figure 21

ADDED RECEIVER PEAK-TO-PEAK JITTER vs

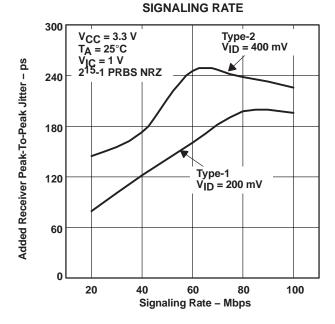


Figure 23

ADDED RECEIVER CYCLE-TO-CYCLE JITTER vs

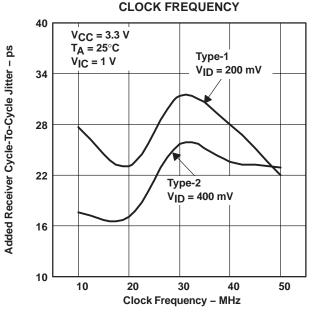


Figure 22

ADDED RECEIVER PEAK-TO-PEAK JITTER vs FREE-AIR TEMPERATURE

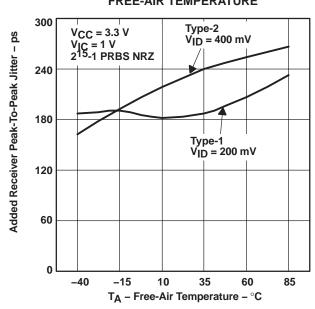


Figure 24

SN65MLVD200A DRIVER OUTPUT EYE PATTERN 100 Mbps, $\mathbf{2^{15-1}}$ PRBS, $\mathbf{R_L}$ = 50 Ω

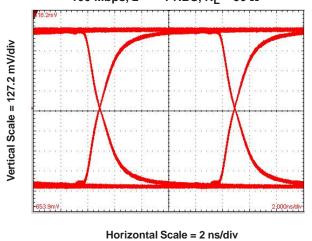


Figure 25

SN65MLVD200A RECEIVER OUTPUT EYE $\begin{array}{c} \text{PATTERN} \\ \text{100 Mbps, } 2^{15-1} \text{ PRBS, } C_{L} = 15 \text{ pF} \end{array}$

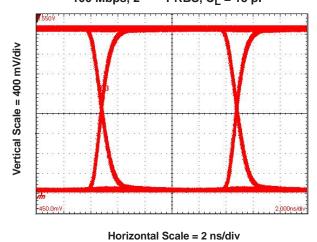


Figure 26

APPLICATION INFORMATION

COMPARISON OF MLVD TO TIA/EIA-485

Receiver Input Threshold (Failsafe)

The MLVD standard defines a type 1 and type 2 receiver. Type 1 receivers include no provisions for failsafe and have their differential input voltage thresholds near zero volts. Type 2 receivers have their differential input voltage thresholds offset from zero volts to detect the absence of a voltage difference. The impact to receiver output by the offset input can be seen in Table 3 and Figure 27.

Table 3. Receiver Input Voltage Threshold Requirements

RECEIVER TYPE	OUTPUT LOW	OUTPUT HIGH
Type 1	$-2.4 \text{ V} \le \text{V}_{1D} \le -0.05 \text{ V}$	$0.05 \text{ V} \le \text{V}_{1D} \le 2.4 \text{ V}$
Type 2	$-2.4 \text{ V} \le \text{V}_{1D} \le 0.05 \text{ V}$	0.15 V ≤ V _{ID} ≤ 2.4 V

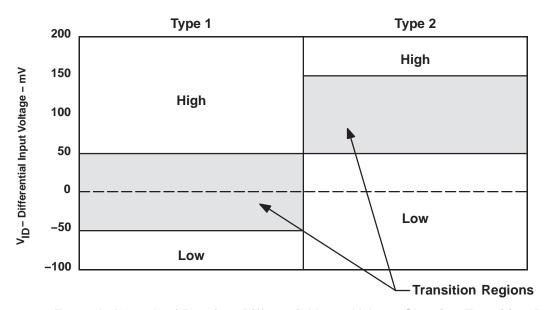
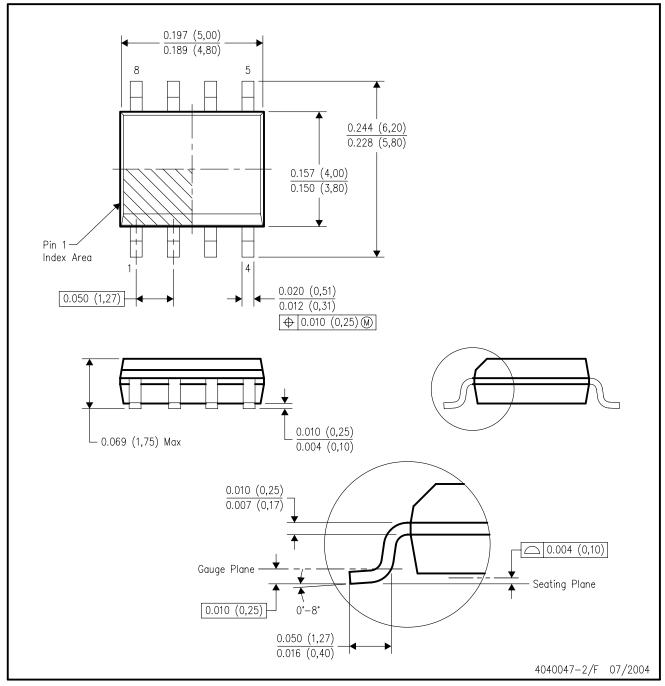


Figure 27. Expanded Graph of Receiver Differential Input Voltage Showing Transition Region

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AB.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated