Atmel AVB Microcontroller Family - Product Selection Guide

DEVICE	90S1200	9052313	9052343	9054414	9058515	9052333	9058535	MEGA603	MEGA103	* Max speed depends on Vcc voltage. Frequencies and Currents listed are for Vcc $=5.0 \mathrm{~V}$ \& $T=25^{\circ} \mathrm{C}$		
ON-CHIP MEMORY												
FLASH (Bytes)	1K	2K	2K	4K	8K	2K	8K	64K	128K	Please verify correct part codes for low voltage parts before ordering.		
EEPROM (Bytes)	64	128	128	256	512	128	512	2K	4 K	Key		
SRAM (Bytes)	0	128	128	256	512	128	512	4K	4K	SRAM - Static RAM		
In-System Programmable (ISP)	YES			D-System Programma								
HARDWARE FEATURES												- In-System Programmab
I/O Pins	15	15	5	32	32	20	32	32//0, 80, 81	321/0, 80, 81			I/O - Input/Output
On-chip RC Oscillator	YES	NO	YES	NO	NO	NO	NO	NO	NO			ADC - Analogue to Digital Convertor
Real Time Clock (RTC)	NO	YES	YES			SPI - Serial Peripheral Interface						
SPI Port	NO	NO	NO	YES	YES	YES	YES	YES	YES			PWM - Pulse Width Modulation
Full Duplex Serial UART	NO	YES	NO	YES	YES	YES	YES	1	1			PAR - Parallel programming mode
Watchdog Timer	YES	FLASH - Reprogrammable Code Memory										
Timer/Counters	1	2	2	2	2	2	2	3	3	EEPROM - Parallel programming mode		
PWM Channels (10-bit)	-	1	-	2	2	1	TBA	2	2			
Analogue Comparator	YES	YES	NO									
ADC	NO	NO	NO	NO	NO	6CH/10BIT	8CH/10BIT	8CH/10BIT	8CH/10BIT			
IDLE and Power Down modes	YES											
Interrupts	4	11	3	13	13	14	17	24	24			
MISCELLANEOUS												
AVR Instructions	89	118	118	118	118	118	120	121	121			
Max External Clock Frequency	12 MHz	10 MHz	10 MHz	8 MHz	8 MHz	8 MHz	8 MHz	6 MHz	6 MHz			
Vcc Voltage Range (V)	4.0-6.0V											
EQUINOX SUPPORT TOOLS										Farnell Order Code		Il Order Code ${ }^{\text {en }}$ Equinox Order Code
AVR Starter System	ISP/PAR	ISP/PAR	ISP/PAR	ISP/PAR	ISP/PAR	ISP/PAR	ISP only	ACT-UPG1	ACT-UPG1			111-806
AVR Development System	ZIF-ISP	UISP-UPG1	UISP-UPG1			302-2249 \quad AVR-DV1 (UK)						
Micro-ISP Series IV Programmer	ISP only			302-2286 UISP-S4								
Micro-ISP Series IV LV Prog.	ISP only			302-2298 UISP-LV4								
Micro-Pro Device Programmer	PAR only	PAR only	-	ZIF-ISP	ZIF-ISP	-	-	-	-			111-715 MPW-PLUS (UK)
AllWriter Universal Programmer	PAR	PAR	-	PAR	PAR	-	-	-	-			302-2225 SG-ALLWRITER
AVR BASIC LITE	YES (1K)	-	-	-	-	-	-	-	-			111-788 \quad AVR-BAS-LIT
AVR BASIC FULL	YES			302-2330 AVR-BAS-FULL								
AT90S8515 Socket Stealer (DIL-40)	NO	NO	NO	YES	YES	NO	NO	NO	NO			302-2365 SS-90S8515-P

Atmel AVR Microcontroller Family - Product Selection Guide

Continued....

Device	9051200	9052313	9052343	9054414	9058515	90S2333	9058535	MEGA603	MEGA103	Farnell Order Code	Equinox Order Code
EQUINOX SUPPORT TOOLS											
AT9058515 Socket Stealer (PLCC)	NO	NO	NO	YES	YES	NO	NO	NO	NO	303-1068	SS-90S8515-J
DOBOX-MOD1	YES	YES	YES	YES	YES	NO	YES	NO	NO	121-022	UC-PM1
PACKAGE TYPES (Farnell Codes)											
6AC	-	-	-	-	-	-	-	120-984	120-972		
8 JC	-	-	-	111-480	111-508	-	120-959	-	-		
8PC	-	-	-	111-478	111-491	-	120-960	-	-		
10PC	-	111-454	111-430	-	-	-	-	-	-		
10SC	-	111-466	111-442	-	-	-	-	-	-		
12PC	690-752	-	-	-	-	-	-	-	-		
12SC	690-934	-	-	-	-	-	-	-	-		

The Embedded Solutions Company

Errata

- Reset During EEPROM Write
- Verifying EEPROM in System
- Serial Programming at Voltages below 3.0 Volts

3. Reset During EEPROM Write

If reset is activated during EEPROM write the result is not what should be expected. The EEPROM write cycle completes as normal, but the address registers are reset to 0 . The result is that both the address written and address 0 in the EEPROM can be corrupted.
Problem Fix/Workaround
Avoid using address 0 for storage, unless you can guarantee that you will not get a reset during EEPROM write.
2. Verifying EEPROM in System

EEPROM verify in In-System Programming mode cannot operate with maximum clock frequency. This is independent of the SPI clock frequency.

Problem Fix/Workaround

Reduce the clock speed, or avoid using the EEPROM verify feature.

1. Serial Programming at Voltages below 3.0 Volts

At voltages below 3.0 Volts, serial programming might fail.

Problem Fix/Workaround

Keep V_{CC} at 3.0 Volts or higher during In-System Programming.

Atmel Headquarters

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe

Atmel U.K., Ltd.
Coliseum Business Centre Riverside Way Camberley, Surrey GU15 3YL England
TEL (44) 1276-686677
FAX (44) 1276-686697
Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road
Tsimshatsui East
Kowloon, Hong Kong
TEL (852) 27219778
FAX (852) 27221369
Japan
Atmel Japan K.K.
Tonetsu Shinkawa Bldg., 9F
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Operations

Atmel Colorado Springs

1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759
Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 442536000
FAX (33) 442536001
Fax-on-Demand
North America:
1-(800) 292-8635
International:
1-(408) 441-0732
e-mail
literature@atmel.com
Web Site
http://www.atmel.com
BBS
1-(408) 436-4309

Ean-Demand
1-(800) 292-8635
International:
1-(408) 441-0732
e-mail
literature@atmel.com
Web Site
http://www.atmel.com
BBS
1-(408) 436-4309

© Atmel Corporation 1999.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Marks bearing ${ }^{\circledR}$ and/or ${ }^{\text {™ }}$ are registered trademarks and trademarks of Atmel Corporation.
Terms and product names in this document may be trademarks of others.
Printed on recycled paper.

Features

- Utilizes the AVR ${ }^{\circledR}$ RISC Architecture
- AVR - High-performance and Low-power RISC Architecture - 89 Powerful Instructions - Most Single Clock Cycle Execution
- 32 x 8 General Purpose Working Registers
- Up to 12 MIPS Throughput at 12 MHz
- Data and Nonvolatile Program Memory
- 1K Bytes of In-System Programmable Flash

Endurance: 1,000 Write/Erase Cycles

- 64 Bytes of In-System Programmable EEPROM

Endurance: 100,000 Write/Erase Cycles

- Programming Lock for Flash Program and EEPROM Data Security
- Peripheral Features
- One 8-bit Timer/Counter with Separate Prescaler
- On-chip Analog Comparator
- Programmable Watchdog Timer with On-chip Oscillator
- SPI Serial Interface for In System Programming
- Special Microcontroller Features
- Low-power Idle and Power Down Modes
- External and Internal Interrupt Sources
- Selectable On-chip RC Oscillator for Zero External Components
- Specifications
- Low-power, High-speed CMOS Process Technology
- Fully Static Operation
- Power Consumption at $4 \mathrm{MHz}, \mathbf{3 V}, 25^{\circ} \mathrm{C}$
- Active: 2.0 mA
- Idle Mode: 0.4 mA
- Power Down Mode: <1 $\mu \mathrm{A}$
- I/O and Packages
- 15 Programmable I/O Lines
- 20-pin PDIP and SOIC
- Operating Voltages
- 2.7-6.0V (AT90S1200-4)
- 4.0-6.0V (AT90S1200-12)
- Speed Grades
- 0-4 MHz, (AT90S1200-4)
- 0-12 MHz, (AT90S1200-12)

Description

The AT90S1200 is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the

Pin Configuration

Note: This is a summary document. For the complete 65 page document, please visit our web site at www.atmel.com or e-mail at literature@atmel.com and request literature \#0838E.

AT90S1200 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
The AVR core combines a rich instruction set with the 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

Block Diagram

Figure 1. The AT90S1200 Block Diagram

The architecture supports high level languages efficiently as well as extremely dense assembler code programs. The AT90S1200 provides the following features: 1K bytes of In-System Programmable Flash, 64 bytes EEPROM, 15 general purpose I/O lines, 32 general purpose working registers, internal and external interrupts, programmable Watchdog Timer with internal oscillator, an SPI serial port for program downloading and two software selectable power saving modes. The Idle Mode stops the CPU while allowing the registers, timer/counter, watchdog and interrupt system to continue functioning. The power down mode saves the register contents but freezes the oscillator, disabling all other chip functions until the next external interrupt or hardware reset.
The device is manufactured using Atmel's high density non-volatile memory technology. The on-chip In-System Programmable Flash allows the program memory to be reprogrammed in-system through an SPI serial interface or by a conventional nonvolatile memory programmer. By combining an enhanced RISC 8-bit CPU with In-System Programmable Flash on a monolithic chip, the Atmel AT90S1200 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.
The AT90S1200 AVR is supported with a full suite of program and system development tools including: macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

Pin Descriptions

VCC

Supply voltage pin.

GND

Ground pin.

Port B (PB7..PB0)

Port B is an 8-bit bi-directional I/O port. Port pins can provide internal pull-up resistors (selected for each bit). PB0 and PB1 also serve as the positive input (AIN0) and the negative input (AIN1), respectively, of the on-chip analog comparator. The Port B output buffers can sink 20 mA and thus drive LED displays directly. When pins PB0 to PB7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not active.

Port D (PD6..PD0)

Port D has seven bi-directional I/O pins with internal pull-up resistors, PD6..PD0. The Port D output buffers can sink 20 mA . As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not active.

RESET

Reset input. A low level on this pin for more than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.

XTAL1

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2

Output from the inverting oscillator amplifier.

Architectural Overview

The fast-access register file concept contains 32×8-bit general purpose working registers with a single clock cycle access time. This means that during one single clock cycle, one ALU (Arithmetic Logic Unit) operation is executed. Two operands are output from the register file, the operation is executed, and the result is stored back in the register file - in one clock cycle.

Figure 2. The AT90S1200 AVR Enhanced RISC Architecture
AVR AT90S1200 Architecture

The ALU supports arithmetic and logic functions between registers or between a constant and a register. Single register operations are also executed in the ALU. Figure 2 shows the AT90S1200 AVR Enhanced RISC microcontroller architecture. The AVR uses a Harvard architecture concept - with separate memories and buses for program and data memories. The program memory is accessed with a two stage pipeline. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is In -System Programmable Flash memory.
With the relative jump and relative call instructions, the whole 512 address space is directly accessed. All AVR instructions have a single 16 -bit word format, meaning that every program memory address contains a single 16-bit instruction.
During interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is a 3 level deep hardware stack dedicated for subroutines and interrupts.
The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, Timer/Counters, A/D-converters, and other I/O functions. The memory spaces in the AVR architecture are all linear and regular memory maps.
A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the status register. All the different interrupts have a separate interrupt vector in the interrupt vector table at the beginning of the program memory. The different interrupts have priority in accordance with their interrupt vector position. The lower the interrupt vector address, the higher the priority.

AT90S1200 Register Summary

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
2. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers $\$ 00$ to $\$ 1 \mathrm{~F}$ only.

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS					
ADD	Rd, Rr	Add two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}+\mathrm{C}$	Z,C,N,V, H	1
SUB	Rd, Rr	Subtract two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z,C,N,V, H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}-\mathrm{C}$	Z,C,N,V,H	1
AND	Rd, Rr	Logical AND Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \cdot \mathrm{Rr}$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd} \cdot \mathrm{K}$	Z,N,V	
OR	Rd, Rr	Logical OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}$ v Rr	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$R d \leftarrow R d v K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rr}$	Z,N,V	1
COM	Rd	One's Complement	$\mathrm{Rd} \leftarrow$ \$FF - Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	$\mathrm{Rd} \leftarrow \$ 00-\mathrm{Rd}$	Z,C,N, V, H	1
SBR	Rd, K	Set Bit(s) in Register	$R d \leftarrow R d v K$	Z,N,V	1
CBR	Rd, K	Clear Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \cdot(\mathrm{FFh}-\mathrm{K})$	Z,N,V	1
INC	Rd	Increment	$\mathrm{Rd} \leftarrow \mathrm{Rd}+1$	Z,N,V	1
DEC	Rd	Decrement	$\mathrm{Rd} \leftarrow \mathrm{Rd}-1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$\mathrm{Rd} \leftarrow \mathrm{Rd} \cdot \mathrm{Rd}$	Z,N,V	1
CLR	Rd	Clear Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rd}$	Z,N,V	1
SER	Rd	Set Register	$\mathrm{Rd} \leftarrow$ \$ FF	None	1
BRANCH INSTRUCTIONS					
RJMP	k	Relative Jump	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	2
RCALL	k	Relative Subroutine Call	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	3
RET		Subroutine Return	$\mathrm{PC} \leftarrow$ STACK	None	4
RETI		Interrupt Return	$\mathrm{PC} \leftarrow$ STACK	I	4
CPSE	Rd,Rr	Compare, Skip if Equal	if ($\mathrm{Rd}=\mathrm{Rr}$) $\mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2
CP	Rd, Rr	Compare	Rd -Rr	Z, N,V,C,H	1
CPC	Rd, Rr	Compare with Carry	$\mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z, N, V, C, H	1
CPI	Rd, K	Compare Register with Immediate	Rd-K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(\operatorname{Rr}(\mathrm{b})=0) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2
SBRS	Rr, b	Skip if Bit in Register is Set	if $(\operatorname{Rr}(\mathrm{b})=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(P(b)=0) P C \leftarrow P C+2$ or 3	None	1/2
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(P(b)=1) P C \leftarrow P C+2$ or 3	None	1/2
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) $=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BREQ	k	Branch if Equal	if $(Z=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRNE	k	Branch if Not Equal	if $(\mathrm{Z}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCS	k	Branch if Carry Set	if ($\mathrm{C}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCC	k	Branch if Carry Cleared	if ($\mathrm{C}=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRSH	k	Branch if Same or Higher	if ($\mathrm{C}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLO	k	Branch if Lower	if ($\mathrm{C}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRMI	k	Branch if Minus	if $(\mathrm{N}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRPL	k	Branch if Plus	if ($\mathrm{N}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if ($\mathrm{N} \oplus \mathrm{V}=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if ($\mathrm{N} \oplus \mathrm{V}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if $(\mathrm{H}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if ($\mathrm{H}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTS	k	Branch if T Flag Set	if $(\mathrm{T}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTC	k	Branch if T Flag Cleared	if $(\mathrm{T}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if $(\mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if $(\mathrm{V}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRIE	k	Branch if Interrupt Enabled	if $(\mathrm{l}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRID	k	Branch if Interrupt Disabled	if $(\mathrm{I}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
DATA TRANSFER INSTRUCTIONS					
LD	Rd, Z	Load Register Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
ST	Z,Rr	Store Register Indirect	$(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
MOV	Rd, Rr	Move Between Registers	$\mathrm{Rd} \leftarrow \mathrm{Rr}$	None	1
LDI	Rd, K	Load Immediate	$\mathrm{Rd} \leftarrow \mathrm{K}$	None	1
IN	Rd, P	In Port	$\mathrm{Rd} \leftarrow \mathrm{P}$	None	1
OUT	P, Rr	Out Port	$\mathrm{P} \leftarrow \mathrm{Rr}$	None	1

Instruction Set Summary (Continued)

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
BIT AND BIT-TEST INSTRUCTIONS					
SBI	P, b	Set Bit in I/O Register	$\mathrm{I} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 1$	None	2
CBI	P, b	Clear Bit in I/O Register	$\mathrm{I} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$\mathrm{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{Rd}(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$\mathrm{Rd}(\mathrm{n}) \leftarrow \mathrm{Rd}(\mathrm{n}+1), \mathrm{Rd}(7) \leftarrow 0$	Z,C,N, V	1
ROL	Rd	Rotate Left Through Carry	$\mathrm{Rd}(0) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}+1) \leftarrow \mathrm{Rd}(\mathrm{n}), \mathrm{C} \leftarrow \mathrm{Rd}(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$\operatorname{Rd}(7) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}) \leftarrow \mathrm{Rd}(\mathrm{n}+1), \mathrm{C} \leftarrow \operatorname{Rd}(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$\mathrm{Rd}(\mathrm{n}) \leftarrow \mathrm{Rd}(\mathrm{n}+1), \mathrm{n}=0 . .6$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$\operatorname{Rd}(3.0) \leftarrow \operatorname{Rd}(7 . .4), \operatorname{Rd}(7 . .4) \leftarrow \operatorname{Rd}(3.0)$	None	1
BSET	s	Flag Set	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR	S	Flag Clear	SREG(s) $\leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$\mathrm{T} \leftarrow \operatorname{Rr}(\mathrm{b})$	T	1
BLD	Rd, b	Bit load from T to Register	$\mathrm{Rd}(\mathrm{b}) \leftarrow \mathrm{T}$	None	1
SEC		Set Carry	$\mathrm{C} \leftarrow 1$	C	1
CLC		Clear Carry	$\mathrm{C} \leftarrow 0$	C	1
SEN		Set Negative Flag	$\mathrm{N} \leftarrow 1$	N	1
CLN		Clear Negative Flag	$\mathrm{N} \leftarrow 0$	N	1
SEZ		Set Zero Flag	$\mathrm{Z}_{\leftarrow} 1$	Z	1
CLZ		Clear Zero Flag	$\mathrm{Z} \leftarrow 0$	Z	1
SEI		Global Interrupt Enable	$\mathrm{I} \leftarrow 1$	1	1
CLI		Global Interrupt Disable	$1 \leftarrow 0$	I	1
SES		Set Signed Test Flag	$\mathrm{S} \leftarrow 1$	S	1
CLS		Clear Signed Test Flag	$\mathrm{S} \leftarrow 0$	S	1
SEV		Set Twos Complement Overflow	$\mathrm{V} \leftarrow 1$	V	1
CLV		Clear Twos Complement Overflow	$\mathrm{V} \leftarrow 0$	V	1
SET		Set T in SREG	$\mathrm{T} \leftarrow 1$	T	1
CLT		Clear T in SREG	$\mathrm{T} \leftarrow 0$	T	1
SEH		Set Half Carry Flag in SREG	$\mathrm{H} \leftarrow 1$	H	1
CLH		Clear Half Carry Flag in SREG	$\mathrm{H} \leftarrow 0$	H	1
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	3
WDR		Watch Dog Reset	(see specific descr. for WDR/timer)	None	1

Ordering Information ${ }^{(1)}$

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
4	2.7-6.0V	AT90S1200-4PC AT90S1200-4SC AT90S1200-4YC	$\begin{aligned} & 20 \mathrm{P} 3 \\ & 20 \mathrm{~S} \\ & 20 \mathrm{Y} \end{aligned}$	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
		AT90S1200-4PI AT90S1200-4SI AT90S1200-4YI	$\begin{aligned} & 20 \mathrm{P} 3 \\ & 20 \mathrm{~S} \\ & 20 \mathrm{Y} \end{aligned}$	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$
12	4.0-6.0V	AT90S1200-12PC AT90S1200-12SC AT90S1200-12YC	$\begin{aligned} & 20 \mathrm{P} 3 \\ & 20 \mathrm{~S} \\ & 20 \mathrm{Y} \end{aligned}$	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$)
		AT90S1200-12PI AT90S1200-12SI AT90S1200-12YI	$\begin{aligned} & 20 \mathrm{P} 3 \\ & 20 \mathrm{~S} \\ & 20 \mathrm{Y} \end{aligned}$	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$

Note: 1. Order AT90S1200A-XXX for devices with the RCEN fuse programmed.

Package Type	
20P3	20-lead, 0.300" Wide Plastic Dual Inline Package (PDIP)
$\mathbf{2 0 S}$	20-lead, 0.300" Wide, Plastic Gull-Wing Small Outline (SOIC)
$\mathbf{2 0 Y}$	20-lead, 5.3 mm Wide, Plastic Shrink Small Outline Package (SSOP)

Packaging Information

20P3, 20-lead, 0.300" Wide,
Plastic Dual Inline Package (PDIP)
Dimensions in Inches and (Millimeters)
JEDEC STANDARD MS-001 BA

20S, 20-lead, 0.300" Wide,
Plastic Gull-Wing Small Outline (SOIC)
Dimensions in Inches and (Millimeters)

20Y, 20-lead, 5.3 mm Wide,
Plastic Shrink Small Outline Package (SSOP)
Dimensions in Millimeters and (Inches)

Atmel Headquarters

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe

Atmel U.K., Ltd.
Coliseum Business Centre Riverside Way Camberley, Surrey GU15 3YL England
TEL (44) 1276-686-677
FAX (44) 1276-686-697
Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan

Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Operations

Atmel Colorado Springs

1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759
Atmel Rousset
Zone Industrielle
13106 Rousset Cedex
France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Fax-on-Demand
North America:
1-(800) 292-8635
International:
1-(408) 441-0732
e-mail
literature@atmel.com
Web Site http://www.atmel.com
\section*{BBS}
1-(408) 436-4309

© Atmel Corporation 1999.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Marks bearing ${ }^{\circledR}$ and/or ${ }^{\top \mathrm{M}}$ are registered trademarks and trademarks of Atmel Corporation.
Terms and product names in this document may be trademarks of others.
Printed on recycled paper.

