tyco
Electronics

AXICOM

The Best Relaytion

Reed Relays

1 and 2 pole relays
non-polarized, non-latching

Features

- Direct coil control with TTL-signals possible
- Highly reliable switching
- High switching rates
- Ultrasonic cleanable
- High vibration and shock resistance

Relay Types
DIP version (flat)

- Standard version
- Electrostatic shield between coil and contact
- Protective diode
- Electrostatic shield and protective diode
- Contact arrangement: 1 form a (1 normally open contact) or 1 form c (1 changeover contact)

DIP version (high)

- Standard version
- Electrostatic shield between coil and contact
- Protective diode
- Electrostatic shield and protective diode
- Contact arrangement: 2 form a (2 normally open contacts) or 1 form c (1 changeover contact)

SIL version

- Standard version
- Protective diode
- Electrostatic shield and protective diode

- Contact arrangement: 1 form a (1 normally open contact)

Reed Relays / DIP/SIL Series V23100-V4

DIP version (flat)

Dimensions drawing (in mm)

Mounting hole layout Top view

Terminal assignment
Relay - top view

1 form a, with electrostatic shield

1 form a, with diode

1 form c, standard

1 form a, with electrostatic shield and diode

Ordering Information

1 form a, standard	V23100-V40** A000
1 form a, with electrostatic shield	V23100-V40** A001
1 form a, with diode	V23100-V40** AO 10
1 form a, with electrostatic shield and diode	V23100-V40*-A011
1 form c, standard	V23100-V43*-C000
1 form c, with electrostatic shield	V23100-V43** $\mathrm{COO1}$

$$
\begin{array}{ll}
\text { Ordering Code } & \text { Tyco } \\
& \text { Part Number }
\end{array}
$$

Ordering Code

Tyco Part Number

V23100-V4005-A000	$0-1393763-1$	V23100-V4024-A000	$1-1393763-4$
V23100-V4005-A001	$0-1393763-3$	V23100-V4024-A001	$1-1393763-5$
V23100-V4005-A010	$0-1393763-4$	V23100-V4024-A010	$1-1393763-6$
V23100-V4005-A011	$0-1393763-5$	V23100-V4024-A011	$1-1393763-7$
V23100-V4012-A000	$0-1393763-6$	V23100-V4305-C000	$2-1393763-0$
V23100-V4012-A001	$0-1393763-7$	V23100-V4305-C001	$2-1393763-1$
V23100-V4012-A010	$0-1393763-8$	V23100-V4312-C000	$2-1393763-8$
V23100-V4012-A011	$0-1393763-9$	V23100-V4312-C001	$2-1393763-9$
V23100-V4015-A000	$1-1393763-0$	V23100-V4315-C000	$3-1393763-4$
V23100-V4015-A001	$1-1393763-1$	V23100-V4315-C001	$3-1393763-5$
V23100-V4015-A010	$1-1393763-2$	V23100-V4324-C000	$4-1393763-0$
V23100-V4015-A011	$1-1393763-3$	V23100-V4324-C001	$4-1393763-1$

Dimensions drawing (in mm)

Terminal assignment
Top view

2 form a, standard
1 form c, with diode

2 form a, with diode

Mounting hole layout Top view

1 form c , with electrostatic shield and diode

Ordering Information	
2 form a, standard	V23100-V43**-B000
2 form a, with diode	V23100-V43**-B001
1 form c, with diode	V23100-V43**-C010
1 form c, with electrostatic shield and diode	V23100-V43**-C011

$05=5 \mathrm{Vdc}$ coil
$12=12 \mathrm{Vdc}$ coil
$15=15 \mathrm{Vdc}$ coil $24=24 \mathrm{Vdc}$ coil

Ordering Code

V23100-V4305-B000	$1-1393763-8$
V23100-V4305-B010	$1-1393763-9$
V23100-V4305-C010	$2-1393763-2$
V23100-V4305-C011	$2-1393763-3$
V23100-V4312-B000	$2-1393763-6$
V23100-V4312-B010	$2-1393763-7$
V23100-V4312-C010	$3-1393763-0$
V23100-V4312-C011	$3-1393763-1$

Ordering Code
V23100-V4315-B000
V23100-V4315-B010
V23100-V4315-C010
V23100-V4315-C011
V23100-V4324-B000
V23100-V4324-B010
V23100-V4324-C010
V23100-V4324-C011

Tyco
Part Number

3-1393763-2 3-1393763-3 3-1393763-6 3-1393763-7 3-1393763-8 3-1393763-9 4-1393763-2 4-1393763-3

SIL version

Dimensions drawing (in mm)
Dimensions

Terminal assignment
Top view

2 form a, standard
1 form a, with diode

Mounting hole layout Top view

Ordering Information

1 form a, standard
1 form a, with diode

Coil version: \quad| 05 | $=5$ Vdc coil |
| ---: | :--- |
| 12 | $=12$ Vdc coil |
| 15 | $=15 \mathrm{Vdc}$ coil |
| 24 | $=24 \mathrm{Vdc}$ coil |

Ordering Code	Tyco
	Part Number

V23100-V4505-A000	$4-1393763-4$
V23100-V4505-A010	$4-1393763-5$
V23100-V4512-A000	$4-1393763-7$
V23100-V4512-A010	$4-1393763-8$
V23100-V4515-A000	$4-1393763-9$
V23100-V4515-A010	$5-1393763-0$
V23100-V4524-A000	$5-1393763-1$
V23100-V4524-A010	$5-1393763-2$

Coil Data (values at $23^{\circ} \mathrm{C}$)

Nominal voltage Unom	Minimum voltage U_{1}	Maximum voltage $U_{\text {II }}$	Release/ reset voltage Minimum	Nominal power consumption	Resistance
Vdc	Vdc	Vdc	Vdc	mW	$\Omega / \pm 10 \%$

DIP and SIL version: 1 form a contact

5	3.5	22	0.75	50	500
12	8.4	33	1.80	144	112
15	10.5	44	2.25	112	$2^{\prime} 000$
24	16.8	44	3.60	288	$2^{\prime} 000$

DIP version: 2 form a contacts

5	3.5	14	0.75	125	200
12	8.4	25	1.80	288	500
15	10.5	47	2.25	112	$2^{\prime} 000$
24	16.8	47	3.60	288	$2^{\prime} 000$

DIP version: 1 form c contact

5	3.5	$13(14.5)^{\star}$	0.75	125	200
12	8.4	$22(23.5)^{*}$	1.80	288	500
15	10.5	$44(14.5)^{*}$	2.25	112	$2^{\prime} 000$
24	16.8	$44(49)^{*}$	3.60	288	$2^{\prime} 000$

*Value in brackets refer to high relay with protective diode
$U_{1}=\quad$ Minimum voltage at $23^{\circ} \mathrm{C}$ after pre-energizing with nominal voltage without contact current
$U_{\text {II }}=\quad$ Maximum continous voltage at 23°
The operating voltage limits U_{1} and $U_{\text {II }}$ depend on the temperature according to the formula:

$$
\begin{array}{ll}
U_{\text {Itamb }}= & \mathrm{K}_{1} \cdot U_{123^{\circ} \mathrm{C}} \\
\text { and } \\
U_{\text {II tamb }}= & \mathrm{K}_{I I} \cdot U_{\| 23^{\circ} \mathrm{C}} \\
t_{\text {amb }} & =\text { Ambient temperature } \\
U_{\text {Itamb }} & =\text { Minimum voltage at ambient temperature, } \mathrm{t}_{\mathrm{amb}} \\
U_{\text {II tamb }} & =\text { Maximum voltage at ambient temperature, } \mathrm{t}_{\mathrm{amb}} \\
K_{1}, k_{\| \|} & =\text {Factors (dependent on temperature), see diagram }
\end{array}
$$

General data

Type of relay	DIP version			SIL version
Type of contact/s	1 form a	2 form a	1 form c	1 form a
Maximum operate time (including bounce)	0.5 ms		0.7 ms	0.5 ms
Maximum release time (including bounce)	0.2 ms		1.0 ms	0.2 ms
Maximum switching load without load	650 operations/	500 operations/s	150 operations/s	650 operations/s
Operating temperature range	$-40^{\circ} \ldots+70^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ on request			
Storage temperature	$-40^{\circ} \mathrm{C} \ldots+95^{\circ} \mathrm{C}$			
Thermal resistance	Approx. $75 \mathrm{~K} / \mathrm{W}$			
Maximum permissible coil temperature	$105^{\circ} \mathrm{C}$			
Vibration resistance (function)	10 to	$\begin{aligned} & \mathrm{G} \\ & 000 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} 30 \mathrm{G} \\ 50 \text { to } 2000 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 10 \mathrm{G} \\ 10 \text { to } 2000 \mathrm{~Hz} \end{gathered}$
Shock resistance, half sinus, 11 ms			50 G	150 G
Degree of protection	immersion cleanable, IP 67			
Typical mechanical endurance	5×106 operations		4×106 operations	5×106 operations
Mounting position	any			
Resistance to soldering heat	$10 \mathrm{~s} / 260{ }^{\circ} \mathrm{C}$			

Contact data

Type of relay	DIP version		SIL version
Type of contact/s	1 form a 2 form a	1 form c	1 form a
Contact material	Gold covered with Rhodium		
Maximum continuous current	1 A	1.2 A	1 A
Maximum switching current	0.5 A	0.25 A	0.5 A
Maximum switching voltage at nominal voltage: 5 Vdc $12-24 \mathrm{Vdc}$	180 Vdc / Vac 200 Vdc / Vac	175 Vdc	$180 \mathrm{Vdc} / \mathrm{Vac}$ 200 Vdc / Vac
Maximum switching capacity DC voltage AC voltage	$\begin{aligned} & 10 \mathrm{~W} \\ & 10 \mathrm{VA} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~W} \\ & 3 \mathrm{VA} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~W} \\ & 10 \mathrm{VA} \end{aligned}$
Thermoelectric potential	$<100 \mu \mathrm{~V}$		
Initial contact resistance / measuring condition:	$<150 \mathrm{~m} \Omega$		
Electrical endurance $\begin{aligned} & 12 \mathrm{~V} / 10 \mathrm{~mA} \\ & 24 \mathrm{~V} / 400 \mathrm{~mA} \end{aligned}$		5×10^{7} 5×10^{6}	
Mechanical endurance, typ.	5×10^{6} operations	4×10^{6} operations	5×10^{6} operations

Insulation

Insulation resistance at 500 VDC
Dielectric test voltage (1 min)
contact / coil
contact / contact

contact coil $>10^{11} \Omega$		
1500 Vdc	1500 Vdc 250 Vdc	1500 Vdc 200 Vdc
250 Vdc		

High Frequency Data

Capacitance
between coil and contacts
between adjacent contact sets
between open contacts

IM Relays

$4^{\text {th }}$ generation slim line - low profile polarized $2 \mathrm{c} / \mathrm{o}$ telecom relay with bifurcated contacts, available as non latching or latching relay with 1 coil. Nominal voltage range from $1.5 \ldots 24 \mathrm{~V}$, coil power consumption of 140 ... 200 mW , latching relays with 1 coil 100 mW . The IM relay is available as through hole and surface mount type (J-Legs and Gull Wings) and capable to switch loads up to 60 W/62,5 VA. Dielectric strength fulfills the Bellcore requirements according GR 1089 ($2,5 \mathrm{kV}-$ $2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The IM relay is CECC/IECO approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. $10 \times 6 \mathrm{~mm}$ board space and 5.65 mm height.

P2 Relays

$3^{\text {rd }}$ generation polarized 2 c/o telecom relay with bifurcated contacts, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from 3 ... 24 V , coil power consumption 140 mW , latching relays with 1 coil 70 mW . The P2 Relay is available as through hole or surface mount type and capable to switch currents up to 5 A . Dielectric strength fulfills the Bellcore requirements according GR $1089(2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and 10 mm height.

FX Relays

$3^{\text {rd }}$ generation polarized 2 c/o telecom relay with bifurcated contacts, available as non latching or latching relay with 1 coil. Nominal voltage range from 3 ... 48 V , coil power consumption of 80 ... 260 mW for the high sensitive version, $140 \ldots 300 \mathrm{~mW}$ for the standard version, latching relays with 1 coil 100 mW . The FX2 relay is available as through hole type and capable to switch loads up to $60 \mathrm{~W} / 62,5 \mathrm{VA}$. Dielectric strength fulfills the Bellcore requirements according GR $1089(2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The FX2 is CECC/IECQ approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and $10,7 \mathrm{~mm}$ height.

FT2 / FU2 Relays

$3^{\text {rd }}$ generation non polarized, non latching $2 \mathrm{c} / \mathrm{o}$ telecom relay with bifurcated contacts. Nominal voltage range from 3 ... 48 V , coil power consumption 200 ... 300 mW . Most sensitive 48 V relay. Available as through hole and surface mount type. Dielectric strength fulfills the Bellcore requirements according GR 1089 ($2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s}$) and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The FT2/FU2 is CECC/IECO approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and 10 mm height.

FP1 Relays

$3^{\text {rd }}$ generation polarized 2 c/o telecom relay with bifurcated contacts, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from 3 ... 48 V , coil power consumption of 80 ... 260 mW for the high sensitive version, $140 \ldots 300 \mathrm{~mW}$ for the standard version, latching relays with 1 coil 100 mW .. The FP1 Relay is available as through hole type and capable to switch loads up to 30 W/62,5 VA. Dielectric strength fulfills FCC part 68 (1,5 kV - 10 / $160 \mu \mathrm{~s})$. The FP2 is CECC/IECQ approved. Dimensions approx. $14 \times 9 \mathrm{~mm}$ board space and 5 mm height.

MT2 / MT4

$2^{\text {nd }}$ generation non polarized, non latching $2 \mathrm{c} / \mathrm{o}$ and $4 \mathrm{c} / \mathrm{o}$ telecom and signal relay with bifurcated contacts. Nominal voltage range from 4.5 ... 48 V , coil power consumption 150/200/300/400 and 550 mW , and 300 mW (MT4). Dielectric strength fulfills the
requirements according FCC part $68(1,5 \mathrm{kV}-10 / 160 \mathrm{ks})$ for both and the Bellcore requirements according GR $1089(2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s})$ the MT4 only.
Dimensions MT2 approx. $20 \times 10 \mathrm{~mm}$ board space and 11 mm height, MT4 approx. $20 \times 15 \mathrm{~mm}$ board space and 11 mm height.

D2n Relays

$2^{\text {nd }}$ generation non polarized $2 \mathrm{c} /$ o relay for telecom and various other applications. Nominal voltage range from $3 \ldots 48 \mathrm{~V}$, coil power consumption from $150 \ldots 500 \mathrm{~mW}$. The D2n relay is capable to switch currents up to 3 A . Dielectric strength fulfills the requirements according FCC part 68 ($1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s}$). Dimensions approx. $20 \times 10 \mathrm{~mm}$ board space and $11,5 \mathrm{~mm}$ height.

P1 Relays

Extremely sensitive, polarized $1 \mathrm{c} / \mathrm{o}$ relay with bifurcated contacts for a wide range of applications, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from 3 ... 24 V , coil power consumption 65 mW , latching relays with 1 coil 30 mW . The P1 relay is available as through hole or surface mount type and capable to switch currents up to 1 A . Dielectric strength fulfills the requirements according FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. Dimensions approx. $13 \times 7,6 \mathrm{~mm}$ board space and 7 mm height for THT or 8 mm height for SMT version.

W11 Relays

Low cost, non polarized $1 \mathrm{c} /$ o relay for various applications. Nominal voltage range from $3 \ldots 24 \mathrm{~V}$, coil power consumption 450 mW , sensitive versions 200 mW . The W11 relay is capable to switch currents up to 3 A. Dielectric strength 1000 Vrms. Dimensions approx. $15,6 \times 10,6 \mathrm{~mm}$ board space and $11,5 \mathrm{~mm}$ height.

Reed Relays

High sensitive, non polarized relay for telecom and various other applications, available with $1 \mathrm{n} / \mathrm{o}, 2 \mathrm{n} / \mathrm{o}$ or 1c/o contacts. Nominal voltage range from 5 ... 24 V , coil power consumption 50 ... 280 mW for $1 \mathrm{n} / \mathrm{o}$ and $125 \ldots 280 \mathrm{~mW}$ for 2 n /o or $1 \mathrm{c} / \mathrm{o}$ versions. Reedrelays are available in DIP or SIL housing and capable to switch currents up to 0,5 A. Integrated diode and/or electrostatic shield optional. Dielectric strength 1500 Vdc . Dimensions approx. 19,3×7 mm board space and 5 ... $7,5 \mathrm{~mm}$ height for DIP or $19,8 \times 5 \mathrm{~mm}$ board space and $7,8 \mathrm{~mm}$ height for SIL version.

Cradle Relays

Extremely reliable and mature relay family of $1^{\text {st }}$ generation for various signal switching applications. Available as non polarized, polarized / latching and relay with AC coil. The benefit is the possibility of combining various contact sets from 1 up to 6 poles, single and bifurcated contacts, different contact materials with a coil voltage range from $1,5 \mathrm{Vdc}$ to 220 Vac . Cradle relays are available as dust protected and hermetically sealed versions, with plug in or solder terminals and are capable to switch currents up to 5 A . Forcibly guided (linked) contact sets optional. Dielectric strength 500 Vrms. Dimensions from approx. 19×24 to $19 \times 35 \mathrm{~mm}$ board space and 30 mm height.

Other Relays

We offer a variety of different relay families for maintenance and replacement purposes. These relays are up to 60 years old now, such as Card Relay SN (V23030 / V23031 series), Small General Purpose Relay (V23006 series), Small Polarized Relay (V23063 ... V23067 and V23163 ... V23167 series). Accessories like sockets, hold down springs, etc. optional.

AXICOM

Electronics

Tyco Electronics AXICOM Ltd.
Seestrasse 295 -P.O. Box 220
CH-8804 Au-Wädenswil / Switzerland
Phone +41 17829111
Fax +41 17829080
E-mail: axicom@tycoelectronics.com

Tyco Electronics AMP GmbH
Paulsternstrasse 26
D-13629 Berlin / Germany
Phone +49 3038638260
Fax+49 3038638569
E-mail: axicom@tycoelectronics.com

Tyco Electronics EC Trutnov s.r.o.
Komenského 821
CZ-541 01 Trutnov / Czech Republic
E-mail: axicom@tycoelectronics.com

Tyco Electronics Corporation

 POB 3608,Harrisburg, PA 17105, USA

