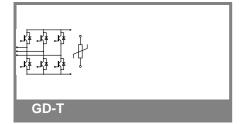


IGBT Module

SK50GD126T

Preliminary Data

Features


- One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

Typical Applications*

- Inverter up to 28 kVA
- Typ. motor power 15 kW

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified					
Symbol	Conditions			Values	Units
IGBT					
V_{CES}	T _j = 25 °C			1200	V
I _C	T _j = 150 °C	T _s = 25 °C		68	Α
		$T_s = 70 ^{\circ}C$		52	Α
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			100	Α
V_{GES}				± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C		10	μs
Inverse D	Diode				,
I _F	T _j = 150 °C	T_s = 25 °C		62	Α
		$T_s = 70 ^{\circ}C$		46	Α
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			100	Α
Module					
$I_{t(RMS)}$					Α
T_{vj}				-40 + 150	°C
T _{stg}				-40 + 125	°C
V _{isol}	AC, 1 min.			2500	V

Characteristics T _s = 25 °C, unless otherwise specified						ecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,0067	mA
		T _j = 125 °C				mA
I_{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			600	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		1	1,2	V
		T _j = 125 °C		0,9	1,1	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		14	19	mΩ
		T _j = 125°C		22	27	mΩ
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,7	2,1	V
		$T_j = 125^{\circ}C_{chiplev.}$		2	2,45	V
C _{ies}				3,6		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,188		nF
C _{res}				0,163		nF
$t_{d(on)}$				115		ns
t _r `´	$R_{Gon} = 8 \Omega$	V _{CC} = 600V		28		ns
t _r		I _C = 50A		4,6		mJ
$t_{d(off)}$	$R_{Goff} = 8 \Omega$	T _j = 125 °C		509		ns
t _f		V _{GE} = -7/ +15 V		100		ns
E_{off}				6,3		mJ
$R_{th(j-s)}$	per IGBT			0,6		K/W

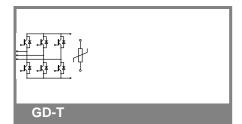
IGBT Module

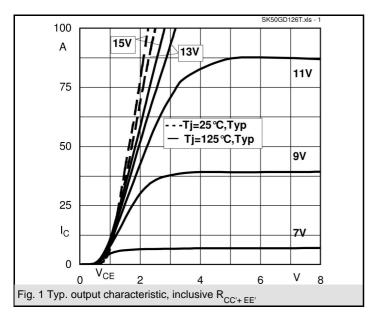
SK50GD126T

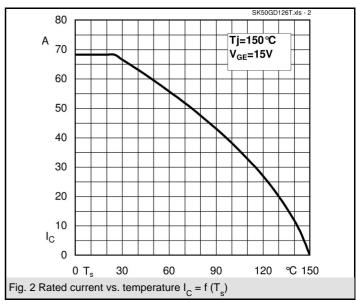
Preliminary Data

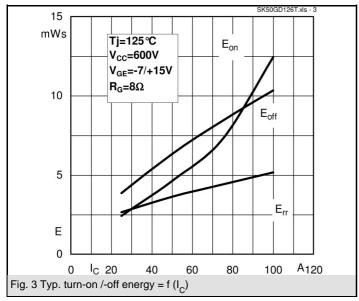
Features

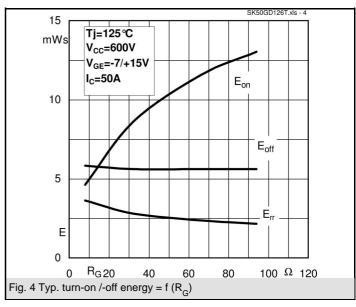
- · One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

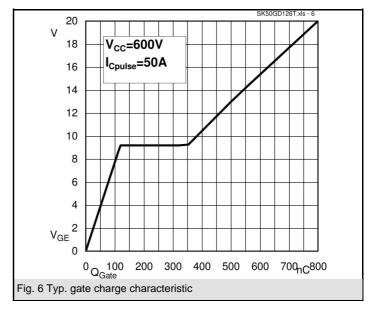

Typical Applications*

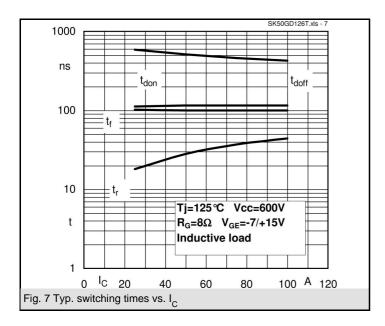

- Inverter up to 28 kVA
- Typ. motor power 15 kW

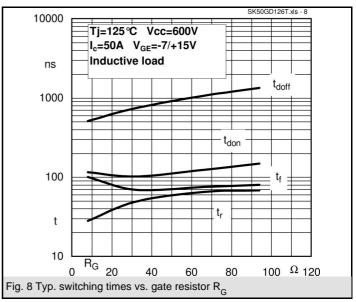

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse D	iode						
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,35		V	
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,35		V	
V _{F0}		T _j = 25 °C		0,95		V	
		T _j = 125 °C		0,85		V	
r _F		T _j = 25 °C		8		mΩ	
		T _j = 125 °C		10		$\text{m}\Omega$	
I _{RRM}	I _F = 50 A	T _j = 125 °C		30		Α	
Q_{rr}	di/dt = 500 A/µs			10		μC	
E _{rr}	V _{CC} = 600V			3,6		mJ	
R _{th(j-s)D}	per diode			1		K/W	
M _s	to heat sink		2,5		2,75	Nm	
w				60		g	
Temperature sensor							
R ₁₀₀	T_s =100°C (R_{25} =5kΩ)			493±5%		Ω	

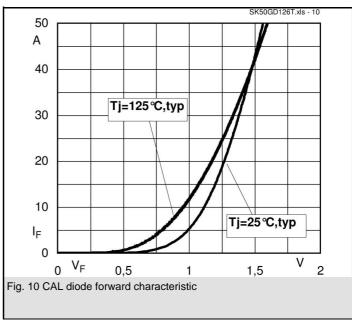

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

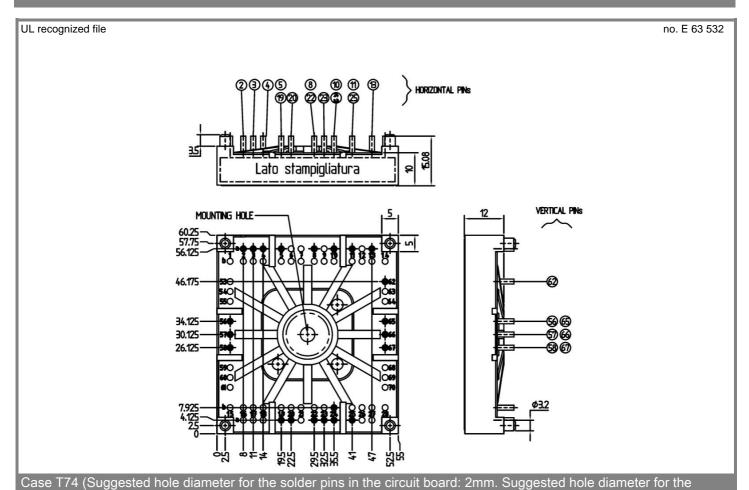

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

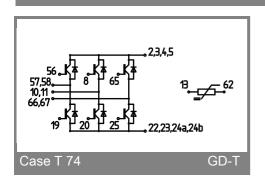












mounting pins in the circuit board: 3,6mm)

5 27-08-2008 DIL © by SEMIKRON